
Unit-4
Arrays: Introduction – Declaration of Arrays – Accessing elements of the Array –
Storing Values in Array– Operations on Arrays – one dimensional, two dimensional
and multi dimensional arrays, character handling and strings.

2.1 Introduction:

 An array is a collection of variables of the same type that are referenced by a
common name.

 In C, all arrays consist of contiguous memory locations.

 The lowest address corresponds to the first element and the highest address to the
last element.

 Arrays may have from one to several dimensions. A specific element in an array is
accessed by an index.

2.2 Declaration of Arrays

 The general form of single-dimension array declaration is:
◦ Type variable name[size];

 Here, type declares the base type of the array, size defines how many elements the
array will hold.

 For example, the following declares as integer array named sample that is ten
elements long:

◦ int a[10];

 Declares an array, named a, consisting of ten elements, each of type int. Simply
speaking, an array is a variable that can hold more than one value.

◦ Ex: int x[100]; float mark[50]; char name[30];

Memory representation:

The following diagram represents an integer array that has 12 elements. The index of the

array starts with 0, so the array having 12 elements has indexes from 0 to 11.

2.3 Accessing elements of the Array

 We can access any array element using array name and subscript/index written
inside pair of square brackets [].

 For Example:
◦ Suppose we have an integer array of length 5 whose name is marks.

int marks[5] = {5,2,9,1,1}; Now we can access elements of array marks

using subscript followed by array name.

◦ marks[0] = First element of array marks = 5
◦ marks[1] = Second element of array marks = 2
◦ marks[2] = Third element of array marks = 9
◦ marks[3] = Fourth element of array marks = 1
◦ marks[4] = Last element of array marks = 1
◦ Remember array indexing starts from 0. Nth element in array is at index N-1.

2.4 Storing Values in Array

 you can also initialize the array during declaration like this:
 int arr[5] = {1, 2, 3, 4 ,5};OR (both are same)
 int arr[] = {1, 2, 3, 4, 5};Un-initialized array always contain garbage values.
 Using scanf:

◦ For(i=0;i<n;i++)
 Scanf(“%d”,&a[i]);

2.5 Operations on Arrays

 Change Value of Array elements
◦ int mark[5] = {19, 10, 8, 17, 9} // make the value of the third element to -1
◦ mark[2] = -1; // make the value of the fifth element to 0
◦ mark[4] = 0;

 Arithematic Operation on array elements.
 Input and Output Array Elements

◦ Here's how you can take input from the user and store it in an array element.
◦ // take input and store it in the 3rd element

◦ scanf("%d", &mark[2]);
 // take input and store it in the ith element scanf("%d", &mark[i-1]);
 Here's how you can print an individual element of an array.
 // print the first element of the array
 printf("%d", mark[0]);
 // print the third element of the array

 printf("%d", mark[2]);
 // print ith element of the array
 printf("%d", mark[i-1]);

Example:

Example 1: Array Input/Output
// Program to take 5 values from the user and store them in an array // Print the

elements stored in the array
#include <stdio.h>
void main()
{
 int values[5];
printf("Enter 5 integers: "); // taking input and storing it in an array
for(int i = 0; i < 5; ++i)
{
scanf("%d", &values[i]);
}
printf("Displaying integers: "); // printing elements of an array
for(int i = 0; i < 5; ++i)
{
printf("%d\n", values[i]);

}

}
Output:

Enter 5 integers:

1
-3
34
0
3
Displaying integers:
1
-3
34
0
3
Things you can and can’t do

 You can not
◦ use = to assign one array variable to another
◦ Int a[10];
◦ printf(“%d”,a);
◦ use == to directly compare array variables
◦ directly scanf or printf arrays

 But you can do these things on array elements.
 You can write functions to do them.

2.6 One dimensional Array

 One dimensional array is an array that has only one subscript specification that is
needed to specify a particular element of an array.

 A one-dimensional array is a structured collection of components (often called array
elements) that can be accessed individually by specifying the position of a
component with a single index value.

 Syntax:
 data-type arr_name[array_size];
 Example: int a[5]

Initialization

 After an array is declared it must be initialized. Otherwise, it will

contain garbage value (any random value). An array can be initialized at

either compile time or at runtime.

 Compile time initialization:

Compile time initialization of array elements is same as ordinary variable initialization.

The general form of initialization of array is,
 data-type array-name[size] = { list of values };
 /* Here are a few examples */
 int marks[4]={ 67, 87, 56, 77 }; // integer array initialization
 float area[5]={ 23.4, 6.8, 5.5 }; // float array initialization
 int marks[4]={ 67, 87, 56, 77, 59 }; // Compile time error

 One important thing to remember is that when you will give more initialize (array
elements) than the declared array size than the compiler will give an error.

#include<stdio.h>
 void main()
 {
 int i;
 int arr[] = {2, 3, 4}; // Compile time array initialization
 for(i = 0 ; i < 3 ; i++)
 {
 printf("%d\t",arr[i]);
 }
 }

Output:
 2 3 4

 Runtime initialization

An array can also be initialized at runtime using scanf() function. This approach is usually

used for initializing large arrays, or to initialize arrays with user specified values. Example,

#include<stdio.h>
void main()
{
 int arr[4];
 int i, j;
 printf("Enter array element");
 for(i = 0; i < 4; i++)
 {
 scanf("%d", &arr[i]); //Run time array initialization
 }
 for(j = 0; j < 4; j++)
 {

 printf("%d\n", arr[j]);
 }
}

 Rules for Declaring One Dimensional Array
 An array variable must be declared before being used in a program.
 The declaration must have a data type(int, float, char, double, etc.), variable

name, and subscript.
 The subscript represents the size of the array. If the size is declared as 10,

programmers can store 10 elements.
 An array index always starts from 0. For example, if an array variable is

declared as s[10], then it ranges from 0 to 9.
 Each array element stored in a separate memory location.

 Points to Remember About Array in C:
 An array is a derived data type in C that is constructed from the fundamental

data type of C language.
 An array is a collection of similar types of values in a single variable.
 In implementation when we required the ‘n’ number of the variable of a

similar data type then we need to go for the array.
 When we are working with an array always memory will be created in the

contiguous memory location, so randomly we can access the data.
 In an array, all elements will share the same name with a unique

identification value called index.

 Always array index will start from 0 and ends with size – 1.
 When we are working with an array compile-time memory management will

occur i.e. static memory allocation.
 Always size of the array must be an unsigned integer value which should be

greater than zero.
Example Programs:

2.7 Two dimensional and multi dimensional arrays

 Two dimensional arrays are most common type of multi dimensional array. A two
dimensional array in C language is represented in the form 2D matrix having rows
and columns.

◦ A two dimensional matrix is an array of one dimensional arrays.
◦ Two dimensional array requires two subscript variables or indexes.
◦ One subscript represents the row index while other represent column index of

an element in matrix.
◦ Elements of a two dimensional array are stored in contiguous memory

location. First all elements of first row are store then all elements of second

row and so on.

 Any element in two dimensional matrix is uniquely identified by

array_name[row_Index][column_Index], where row_index and column_index are
the subscripts that uniquely specifies the position of an element in a 2D matrix.

 An element in second row and third column of an two dimensional matrix whose
name is board is accessed by board[1][2].

 Like single dimensional array, indexing starts from 0 instead of 1.
 We can declare a two dimensional matrix of R rows and C columns as follows:
 data_type array_name[R][C];
 For Example:

 A two dimensional integer matrix of 3 rows and 3 columns can be declared as

 int score[3][3];

// Declare a two-dimensional array with 3 rows and 2 columns
 int table[3][2]:
// create and initialize an array
 int table[3][2] = { {10, 22}, {33, 44}, {45, 78} };
 or

 int table[3][2] = {10, 22, 33, 44, 45, 78 };
 or
 int table[3][2] = {
 {10, 22},
 {33, 44 },
 {45, 78 }
 };

See the following diagram which represents the above array :

0 1

0 10 22

1 33 44

2 45 78

In the above array :

table[1][1] contains 22
table[2][0] contains 45
table[2][2] is "array out of bounds"

Given: char ch[4][3]

Ch [0][0] Ch [0][1] Ch [0][2]

Ch [1][0] Ch [1][1] Ch [1][2]

Ch [2][0] Ch [2][1] Ch [2][2]

Ch [3][0] Ch [3][1] Ch [3][2]

Example Programs:

Multi dimensional arrays

 C programming language supports multi dimensional Arrays.
 Multi dimensional arrays have more than one subscript variables.
 Multi dimensional array is also called as matrix.
 Multi dimensional arrays are array of arrays.
 Declaration of Multi Dimensional Array
 data_type array_name[size1][size2]...[sizeN];
 Above statement will declare an array of N dimensions of name array_name, where

each element of array is of type data_type. The maximum number of elements that
can be stored in a multi dimensional array array_name is size1 X size2 X
size3...sixeN.

 For Example:
Declaration of two dimensional integer array
 int board[8][8];
Declaration of three dimensional character array

 char cube[50][60][30];
Advantages of an Array in C:
 Random access of elements using array index.
 Use of less line of code as it creates a single array of multiple elements.
 Easy access to all the elements.
 Traversal through the array becomes easy using a single loop.
 Sorting becomes easy as it can be accomplished by writing less line of code.
Disadvantages of an Array in C:

 Allows a fixed number of elements to be entered which is decided at the time of
declaration. Unlike a linked list, an array in C is not dynamic.

 Insertion and deletion of elements can be costly since the elements are needed to be
managed in accordance with the new memory allocation.

2.8 Character handling

 Characters are the fundamental building blocks of every program.
 A character constant is represented as a character in a single quote. The value of

character constant is an integer.
◦ For example, a is represented as 'a' which is actually the integer value equal

to 97 in ASCII.
◦ Similarly, '\n' represents the integer value of newline equal to 10 in ASCII.

 C provides standard character handling library <ctype.h>.
 We should include character handling library i.e. <ctype.h> for using different

character handling function.
 This header include various useful functions for performing tests and manipulations

of character data in C programming.
 The function in <ctype.h> recieves an unsigned char represented as int or EOF as

argument.
 In C programming, character is a one byte integer.
 C programming character library functions with description
 int islower(int ch);

◦ It returns a true if ch is a lowercase letter and 0 otherwise.
 int isupper(int ch);

◦ It returns a true value if ch is a uppercase and 0 therwise.
 int tolower(int ch);

◦ This function converts uppercase letter into lowercase letter.
 int toupper(int ch);

◦ This function converts lowercase letter into uppercase letter.
 int isdigit(int ch);

◦ This function checks whether ch is a digit or not.
 int isalpha int ch);

◦ This function checks whether ch is a letter or not.
 int isalnum(int ch);

◦ This function returns a 1 if ch is a digit or a letter and 0 otherwise.

 int isxdigit(int ch);
◦ This function checks if ch is a hexadecimal digit or not.

 int isspace(int ch);
◦ This function checks if ch is a whitespace character or not.

 int isgraph(int ch);
◦ This function checks if ch is a printing character other than a space or not.

 int iscntrl(int ch);

◦ This function checks if ch is a control character or not.
 int isprint(int ch);

◦ This function checks if ch is a printing character including a space or not.
 int ispunct(int ch);

◦ This function checks if ch is a printing character other than a digit, a space, a
letter or not.

http://www.trytoprogram.com/c-programming/first-program-in-c/
http://www.trytoprogram.com/c-programming/c-library-function-islower-and-isupper/
http://www.trytoprogram.com/c-programming/c-library-function-islower-and-isupper/
http://www.trytoprogram.com/c-programming/c-library-function-islower-and-isupper/
http://www.trytoprogram.com/c-programming/c-library-function-islower-and-isupper/
http://www.trytoprogram.com/c-programming/c-library-function-islower-and-isupper/
http://www.trytoprogram.com/c-programming/c-library-function-islower-and-isupper/
http://www.trytoprogram.com/c-programming/c-library-function-islower-and-isupper/
http://www.trytoprogram.com/c-programming/c-library-function-islower-and-isupper/
http://www.trytoprogram.com/c-programming/c-library-function-islower-and-isupper/
http://www.trytoprogram.com/c-programming/c-library-function-islower-and-isupper/
http://www.trytoprogram.com/c-programming/c-library-function-islower-and-isupper/
http://www.trytoprogram.com/c-programming/c-library-function-islower-and-isupper/
http://www.trytoprogram.com/c-programming/c-library-function-islower-and-isupper/
http://www.trytoprogram.com/c-programming/c-library-function-islower-and-isupper/
http://www.trytoprogram.com/c-programming/c-library-function-islower-and-isupper/
http://www.trytoprogram.com/c-programming/c-library-function-islower-and-isupper/
http://www.trytoprogram.com/c-programming/c-library-function-toupper-and-tolower/
http://www.trytoprogram.com/c-programming/c-library-function-toupper-and-tolower/
http://www.trytoprogram.com/c-programming/c-library-function-toupper-and-tolower/
http://www.trytoprogram.com/c-programming/c-library-function-toupper-and-tolower/
http://www.trytoprogram.com/c-programming/c-library-function-toupper-and-tolower/
http://www.trytoprogram.com/c-programming/c-library-function-toupper-and-tolower/
http://www.trytoprogram.com/c-programming/c-library-function-toupper-and-tolower/
http://www.trytoprogram.com/c-programming/c-library-function-toupper-and-tolower/
http://www.trytoprogram.com/c-programming/c-library-function-toupper-and-tolower/
http://www.trytoprogram.com/c-programming/c-library-function-toupper-and-tolower/
http://www.trytoprogram.com/c-programming/c-library-function-toupper-and-tolower/
http://www.trytoprogram.com/c-programming/c-library-function-toupper-and-tolower/
http://www.trytoprogram.com/c-programming/c-library-function-toupper-and-tolower/
http://www.trytoprogram.com/c-programming/c-library-function-toupper-and-tolower/
http://www.trytoprogram.com/c-programming/c-library-function-toupper-and-tolower/
http://www.trytoprogram.com/c-programming/c-library-function-toupper-and-tolower/
http://www.trytoprogram.com/c-programming/c-library-function-isdigit/
http://www.trytoprogram.com/c-programming/c-library-function-isdigit/
http://www.trytoprogram.com/c-programming/c-library-function-isdigit/
http://www.trytoprogram.com/c-programming/c-library-function-isdigit/
http://www.trytoprogram.com/c-programming/c-library-function-isdigit/
http://www.trytoprogram.com/c-programming/c-library-function-isdigit/
http://www.trytoprogram.com/c-programming/c-library-function-isdigit/
http://www.trytoprogram.com/c-programming/c-library-function-isdigit/
http://www.trytoprogram.com/c-programming/c-library-function-isalpha/
http://www.trytoprogram.com/c-programming/c-library-function-isalpha/
http://www.trytoprogram.com/c-programming/c-library-function-isalpha/
http://www.trytoprogram.com/c-programming/c-library-function-isalpha/
http://www.trytoprogram.com/c-programming/c-library-function-isalpha/
http://www.trytoprogram.com/c-programming/c-library-function-isalpha/
http://www.trytoprogram.com/c-programming/c-library-function-isalpha/
http://www.trytoprogram.com/c-programming/c-library-function-isalpha/
http://www.trytoprogram.com/c-programming/c-library-function-isalnum/
http://www.trytoprogram.com/c-programming/c-library-function-isalnum/
http://www.trytoprogram.com/c-programming/c-library-function-isalnum/
http://www.trytoprogram.com/c-programming/c-library-function-isalnum/
http://www.trytoprogram.com/c-programming/c-library-function-isalnum/
http://www.trytoprogram.com/c-programming/c-library-function-isalnum/
http://www.trytoprogram.com/c-programming/c-library-function-isalnum/
http://www.trytoprogram.com/c-programming/c-library-function-isalnum/
http://www.trytoprogram.com/c-programming/c-library-function-isxdigit/
http://www.trytoprogram.com/c-programming/c-library-function-isxdigit/
http://www.trytoprogram.com/c-programming/c-library-function-isxdigit/
http://www.trytoprogram.com/c-programming/c-library-function-isxdigit/
http://www.trytoprogram.com/c-programming/c-library-function-isxdigit/
http://www.trytoprogram.com/c-programming/c-library-function-isxdigit/
http://www.trytoprogram.com/c-programming/c-library-function-isxdigit/
http://www.trytoprogram.com/c-programming/c-library-function-isxdigit/
http://www.trytoprogram.com/c-programming/c-library-function-isspace/
http://www.trytoprogram.com/c-programming/c-library-function-isspace/
http://www.trytoprogram.com/c-programming/c-library-function-isspace/
http://www.trytoprogram.com/c-programming/c-library-function-isspace/
http://www.trytoprogram.com/c-programming/c-library-function-isspace/
http://www.trytoprogram.com/c-programming/c-library-function-isspace/
http://www.trytoprogram.com/c-programming/c-library-function-isspace/
http://www.trytoprogram.com/c-programming/c-library-function-isspace/
http://www.trytoprogram.com/c-programming/c-library-function-isgraph/
http://www.trytoprogram.com/c-programming/c-library-function-isgraph/
http://www.trytoprogram.com/c-programming/c-library-function-isgraph/
http://www.trytoprogram.com/c-programming/c-library-function-isgraph/
http://www.trytoprogram.com/c-programming/c-library-function-isgraph/
http://www.trytoprogram.com/c-programming/c-library-function-isgraph/
http://www.trytoprogram.com/c-programming/c-library-function-isgraph/
http://www.trytoprogram.com/c-programming/c-library-function-isgraph/
http://www.trytoprogram.com/c-programming/c-library-function-iscntrl/
http://www.trytoprogram.com/c-programming/c-library-function-iscntrl/
http://www.trytoprogram.com/c-programming/c-library-function-iscntrl/
http://www.trytoprogram.com/c-programming/c-library-function-iscntrl/
http://www.trytoprogram.com/c-programming/c-library-function-iscntrl/
http://www.trytoprogram.com/c-programming/c-library-function-iscntrl/
http://www.trytoprogram.com/c-programming/c-library-function-iscntrl/
http://www.trytoprogram.com/c-programming/c-library-function-iscntrl/
http://www.trytoprogram.com/c-programming/c-library-function-isprint/
http://www.trytoprogram.com/c-programming/c-library-function-isprint/
http://www.trytoprogram.com/c-programming/c-library-function-isprint/
http://www.trytoprogram.com/c-programming/c-library-function-isprint/
http://www.trytoprogram.com/c-programming/c-library-function-isprint/
http://www.trytoprogram.com/c-programming/c-library-function-isprint/
http://www.trytoprogram.com/c-programming/c-library-function-isprint/
http://www.trytoprogram.com/c-programming/c-library-function-isprint/
http://www.trytoprogram.com/c-programming/c-library-function-ispunct/
http://www.trytoprogram.com/c-programming/c-library-function-ispunct/
http://www.trytoprogram.com/c-programming/c-library-function-ispunct/
http://www.trytoprogram.com/c-programming/c-library-function-ispunct/
http://www.trytoprogram.com/c-programming/c-library-function-ispunct/
http://www.trytoprogram.com/c-programming/c-library-function-ispunct/
http://www.trytoprogram.com/c-programming/c-library-function-ispunct/
http://www.trytoprogram.com/c-programming/c-library-function-ispunct/

2.9 Strings

 In C programming, a string is a sequence of characters terminated with a null
character ’\0’.

 How to declare a string?
 Here's how you can declare strings:

◦ char s[5]; //Here, we have declared a string of 5 characters.

 How to initialize strings?
 You can initialize strings in a number of ways.
 char c[] = "abcd";
 char c[50] = "abcd";
 char c[] = {'a', 'b', 'c', 'd', '\0'};

 char c[5] = {'a', 'b', 'c', 'd', '\0'};

Actually, you do not place the null character at the end of a string constant.
The C compiler automatically places the '\0' at the end of the string when it initializes
the array.
Let us try to print the above mentioned string −
#include <stdio.h>
void main ()
{

char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};
printf("Greeting message: %s\n", greeting);
getch();

}
C supports a wide range of functions that manipulate null-terminated strings −

Sr.No. Function & Purpose

1 strcpy(s1, s2);
Copies string s2 into string s1.

2 strcat(s1, s2);
Concatenates string s2 onto the end of string s1.

3 strlen(s1);
Returns the length of string s1.

4 strcmp(s1, s2);
Returns 0 if s1 and s2 are the same; less than 0 if s1<s2; greater than 0 if s1>s2.

5 strchr(s1, ch);
Returns a pointer to the first occurrence of character ch in string s1.

6 strstr(s1, s2);
Returns a pointer to the first occurrence of string s2 in string s1.

The following example uses some of the above-mentioned functions −
#include <stdio.h>
 #include <string.h>
void main ()
{

char str1[12] = "Hello";
char str2[12] = "World";
char str3[12]; int len ; /* copy str1 into str3 */
strcpy(str3, str1);
printf("strcpy(str3, str1) : %s\n", str3);

/* concatenates str1 and str2 */

strcat(str1, str2);
printf("strcat(str1, str2): %s\n", str1);

/* total lenghth of str1 after concatenation */
len = strlen(str1);
printf("strlen(str1) : %d\n", len);

}

Question and answers

1. Define array?

2. Discuss how to declare an array with example.

3. Explain about array initialization.

4. Explain how to access elements of the Array.

5. Explain about various types of arrays with example.

6. List out some character handling functions.

7. Define String and list out some strings functions.

